Non-Newtonian and Newtonian blood flow in human aorta: A transient analysis

نویسندگان

  • Raviraj Adhikari
  • Vijay Shankar
چکیده

Pulsatile blood flow in an aorta of normal subject is studied by Computational Fluid Dynamics (CFD) simulations. The main intention of this study is to determine the influence of the non-Newtonian nature of blood on a pulsatile flow through an aorta. The usual Newtonian model of blood viscosity and a nonNewtonian blood model are used to study the velocity distributions, wall pressure and wall shear stress in the aorta over the entire cardiac cycle. Realistic boundary conditions are applied at various branches of the aorta model. The difference between non-Newtonian and Newtonian blood flow models is investigated at four different time instants in the fifth cardiac cycle. This study revealed that, the overall velocity distributions and wall pressure distributions of the aorta for a non-Newtonian fluid model are similar to the same obtained from Newtonian fluid model but the non-Newtonian nature of blood caused a considerable increase in Wall Shear Stress (WSS) value. The maximum wall shear stress value in the aorta for Newtonian fluid model was 241.706 Pa and for non-Newtonian fluid model was 249.827 Pa. Based on the results; it is observed that the non-Newtonian nature of blood affects WSS value. Therefore, it is concluded that the non-Newtonian flow model for blood has to be considered for the flow simulation in aorta of normal subject.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study of Pulsatile Non-Newtonian Blood Flow Through Abdominal Aorta and Renal Arteries Incorporating Fluid- Structure Interaction

Background: The interaction between the blood and the vessel wall is of great clinical interest in studying cardiovascular diseases, the major causes of death in developed countries.Objective: To understand the effects of incorporating fluid-structure interaction into the simulation of blood flow through an anatomically realistic model of abdominal aorta and renal arteries reconstructed from CT...

متن کامل

Effects of non-newtonian properties of blood flow on magnetic nanoparticle targeted drug delivery

Objective(s): One applications of nanotechnology is in the area of medicine which is called nanomedicine. Primary instruments in nanomedicine can help us to detect diseases and used for drug delivery to inaccessible areas of human tissues. An important issue in simulating the motion of nanoparticles is modeling blood flow as a Newtonian or non-Newtonian fluid. Sometimes blood flow is simulated ...

متن کامل

Vibration Analysis of Carotid Arteries Conveying Non-Newtonian Blood Flow Surrounding by Tissues

The high blood rate that often occurs in arteries may play a role in artery failure and tortuosity which leads to blackouts, transitory ischemic attacks and other diseases. However, vibration and instability analysis of carotid arteries are lacking. The objective of this study is to investigate the vibration and instability of the carotid arteries conveying blood under axial tension with surrou...

متن کامل

Effect of six non-Newtonian viscosity models on hemodynamic parameters of pulsatile blood flow in stenosed artery

A numerical study of hemodynamic parameters of pulsatile blood flow is presented in a stenotic artery with A numerical study of hemodynamic parameters of pulsatile blood flow is presented in a stenotic artery with non-Newtonian models using ADINA. Blood flow was considered laminar, and the arterial wall was considered rigid. Studied stenosis severities were 30, 50, and 70% of the cross-section...

متن کامل

Newtonian and Non-Newtonian Blood Flow Simulation after Arterial Stenosis- Steady State and Pulsatile Approaches

Arterial stenosis, for example Atherosclerosis, is one of the most serious forms of arterial disease in the formation of which hemodynamic factors play a significant role. In the present study, a 3-D rigid carotid artery with axisymmetric stenosis with 75% reduction in cross-sectional area is considered. Laminar blood flow is assumed to have both Newtonian and non-Newtonian behavior (generalize...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016